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Abstract. A statistical mechanical approach to granular material is proposed. Using lattice
models from standard statistical mechanics and results from a mean-field replica approach we
find a jamming transition in granular media closely related to the glass transition in supercooled
liquids. These models reproduce the logarithmic relaxation in granular compaction and reversible–
irreversible lines, in agreement with experimental data. The models also exhibit aging effects and
breakdown of the usual fluctuation-dissipation relation. It is shown that the glass transition may be
responsible for the logarithmic relaxation and may be related to the cooperative effects underlying
many phenomena exhibited by granular materials such as the Reynolds transition.

(Some figures in this article appear in colour in the electronic version; see www.iop.org)

1. Introduction

Despite their importance for industrial applications, non-thermal disordered systems such
as granular media have only recently begun to be systematically studied by the physics
community [1]. In particular, concepts from statistical mechanics seem to be successful
for describing these systems, as suggested in his pioneering work by Edwards [2]. In fact,
granular media are composed of a large number of single grains and, just as for the systems of
standard statistical mechanics, each of their macroscopic states corresponds to a huge number of
microstates. Furthermore, they show very general reproducible macroscopic behaviours whose
general properties are not material specific and which are statistically characterized by very few
control parameters, such as their density and load and the amplitude of the external drive [1].
Granular media are ‘non-thermal’ systems since thermal energy plays no role with respect, for
instance, to gravitational energies involved in grain displacements; however, thermal motion
can be replaced by agitation induced by shaking or other driving mechanisms and this allows
the system to explore its space of configurations.

A ‘tapping’ dynamics has several control parameters. One that appears to be very
important, and is related to the amplitude of the vibrations of the external driving, is the
adimensional ratio �ex = a/g [1, 3], where a is the shaking peak acceleration and g the
constant acceleration due to gravity. It has been suggested that �ex plays a role very similar to
that of ‘temperature’ in thermal systems. For simplicity, below we suppose the characteristic
frequency, ω, of the external driving force to be fixed, and in fact in the typical experiments
such as those in references [3,4] in which we are interested, it plays a minor role with respect
to �ex (see [1]). Material parameters such as restitution, friction coefficients, and the presence
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of moisture also usually have to be considered, but they generally do not affect the overall
behaviours.

Experimentally it is found that at low�ex , relaxation processes such as density compaction
under tapping are logarithmically slow. The essential ingredient in the dynamics of dense
granular media is the presence of mechanisms ‘frustrating’ the motion of grains due to
steric hindrance and hard-core repulsion. We have introduced ‘frustrated lattice gases’ to
describe the dynamics of granular materials in the regime of high densities or not too strong
shaking [5–7]. They interestingly allow one to interpret, in a single framework, several different
properties of granular media ranging from logarithmic compaction, density fluctuations,
‘irreversible–reversible’ cycles, aging, breakdown of the fluctuation-dissipation relation, and
segregation to avalanche effects, the Reynolds transition, and several others [6, 7, 13, 14, 25].
In particular they predict the existence of a definite ‘jamming’ transition in granular media,
in strict correspondence with the glass transition of glass formers and spin glasses [1, 8–10].
Furthermore, they constitute new important applications of statistical mechanics to powders
[2, 11].

2. Frustrated lattice gas models for granular media

The very simple schematic models for gently shaken granular media that we introduced are
based on a drastic reduction of the degrees of freedom of the systems to those we suppose to
be essential. The models each consist of a system of elongated grains which move on a lattice.
Grains are subject to gravity and, eventually, to shaking, which is simulated with a driven
diffusion like Monte Carlo dynamics. The crucial ingredient of the models is the presence of
geometric constraints on the motion of the grains; thus, they have been called frustrated lattice
gases [5, 6]. Particles in our models occupy the sites of, say, a square (or cubic) lattice (see
figure 1). They also each have an internal degree of freedom Si = ±1 corresponding to the
possible ‘orientations’ along the two lattice axes. Two nearest-neighbour sites can be both
occupied only if the particles do not overlap.

Figure 1. A schematic picture of the two kinds of frustrated lattice gas model described in the
text. Left: the Tetris model. Right: the Ising frustrated lattice gas, IFLG. Straight and dashed lines
represent the two kinds of interaction εij = ±1. Filled circles represent particles with ‘orientation’
Si = ±1 (black/white).

Each ‘experimental’ tap can be divided into two parts: one where the average kinetic
energy of the grains is finite; and a second where it goes to zero. Thus, in our models grains
undergo a schematic driven diffusive Monte Carlo (MC) dynamics: in the absence of vibrations
they are subject only to gravity and they can only move downwards, always fulfilling the non-
overlap condition; the presence of vibration is introduced by allowing the particles to diffuse
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with a probability pup of moving upwards and a probability pdown = 1 − pup of moving
downwards. The quantity − ln(x0)/2, with x0 = pup/pdown, as we will see, plays the role of
an effective temperature and can be related to the experimental tap vibration intensity, �ex .

2.1. Hamiltonian description

The general model introduced above can be described in terms of a standard lattice gas of
statistical mechanics [5, 6]. The system Hamiltonian must have a hard-core repulsion term
(J → ∞):

HHC = J
∑
〈ij〉

fij (Si, Sj )ninj . (1)

Here ni = 0, 1 are occupancy variables describing the positions of grains, Si = ±1 are ‘spin’
variables associated with the orientations of the particles, J represents the infinite repulsion
felt by the particles when they have the wrong orientations. The hard-core repulsion function
fij (Si, Sj ) is 0 or 1 depending on whether the configuration Si, Sj is right (allowed) or wrong
(not allowed); see figure 1.

The choice of fij (Si, Sj ) depends on the particular model. In particular, here we consider
two models: the Tetris model and the Ising frustrated lattice gas (IFLG). The Tetris model is
made up of elongated particles (see figure 1), each of which may point in two (orthogonal)
directions coinciding with the two lattice bond orientations. In this case fij (Si, Sj ) is given
by [7]

f Tetris
ij (Si, Sj ) = (1/2)(SiSj − εij (Si + Sj ) + 1)

where εij = +1 for bonds along one direction of the lattice and εij = −1 for bonds along
the other. In order for it to have a non-trivial behaviour, the dynamics of the Tetris model has
imposed on it a crucial purely kinetic constraint: particles can flip their ‘spin’ only if three of
their own neighbouring sites are empty.

A real granular system may contain more disorder due to the presence of a wider grain
shape distribution or to the absence of a regular underlying lattice. Typically, each grain
moves in the disordered environment generated by its neighbours. In order to schematically
consider these effects within the above context, another kind of ‘frustrated lattice gas’ was
introduced, made up of grains moving in a lattice with quenched geometric disorder. Such a
model, the Ising frustrated lattice gas (IFLG), has the following hard-core repulsion function,
fij (Si, Sj ) [6]:

f IFLG
ij (Si, Sj ) = (1/2)(εij SiSj − 1)

where εij = ±1 are quenched random interactions associated with the edges of the lattice,
representing the fact that particles must satisfy the geometric constraint of the environment
considered as ‘practically’ quenched (see figure 1). The IFLG shows a non-trivial dynamics
without the necessity of introducing kinetic constraints.

The phase diagram of the Tetris Hamiltonian corresponds to the usual antiferromagnetic
Ising model with dilution. The Hamiltonian of the IFLG exhibits richer behaviours. In the limit
where all sites are occupied (ni = 1 ∀i), it becomes equal to the usual ±J Ising Edwards–
Anderson spin glass [10]. In the limit J → ∞ (which we consider below), a version of
site-frustrated percolation is recovered [15, 16].

The other important contribution to the full Hamiltonian of a granular pack that we consider
below must be gravitational energy: H = HHC + HG, where

HG = g
∑
i

niyi
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and g is the gravity constant and yi is the height of particle i (the mass of the grain and the
lattice spacing are set to unity). The temperature, T , of the present Hamiltonian system (with
J = ∞) is related to the ratio x0 = pup/pdown via the following relation: e−2g/T = x0. It is
useful to define the adimensional quantity � ≡ 1/ln(x−1/2

0 ) = T/g, which we assume plays
the same role as the amplitude of the vibrations in real granular matter—that is, � is a smooth
function of �ex .

It is easy to show [25] that if the system reaches equilibrium, the temperature T is

T −1 = ∂ ln�

∂E
(2)

where � is the number of configurations corresponding to the gravitational energy E. Note
that for samples with constant particle density, E is proportional to the volume and thus 1/T
coincides with Edwards’ compactivity [2] apart from a proportionality constant.

3. The dynamics of compaction

To describe experimental observations regarding the grain density relaxation under a sequence
of taps, a logarithmic law was proposed in reference [3]:

ρ(tn) = ρ∞ − "ρ∞/[1 + B ln(tn/τ1 + 1)]. (3)

This law has proved to be satisfied very well by relaxation data in the IFLG model [6], which
can be excellently rescaled with experimental data. In figure 2, MC compaction data for four
different amplitudes, �, as well as the experimental data for three different amplitudes, �ex , are
collapsed onto a single curve using equation (3). The agreement is very satisfactory (details
regarding these data are given in reference [6]).

Interestingly, the results from the Tetris model are similar [7], but the asymptotic density
ρ∞ is numerically indistinguishable from 1, and thus almost independent of x0, a fact in
contradiction with both IFLG and experimental results [3].

4. Glassy behaviours of granular media

We have seen that compaction shows extremely long relaxation times. In fact, we show that
granular systems are typically in off-equilibrium configurations and that they may undergo
a ‘jamming’ transition. In particular, in the same framework of the above models, we show
how experimental results on ‘memory’ effects (the so-called ‘irreversible–reversible’ cycles)
indicate the existence of a dynamical glassy transition, which can be defined in a similar way
to the glassy transition in real glass formers.

It has been shown in the mean-field approximation [17] and numerically for finite-
dimensional systems [16], that the IFLG, in the absence of gravity, exhibits a spin-glass (SG)
transition at high density (or low temperature) similar to the one found in the p-spin model.
Arenzon has extended the mean-field solution of the IFLG model to include the presence of
gravity [18], showing that at low � the system is frozen in a SG-like phase, but at higher � it
separates into a frozen SG phase at the bottom and a fluid phase on top. Above a critical �,
the system is entirely fluid [19].

4.1. ‘Irreversible–reversible’ cycles and the dynamical glass transition

Tapping experiments typically show ‘irreversible–reversible’ cycles [4] (see figure 3): during a
sequence of taps, if the system is successively shaken at increasing vibration amplitudes, its bulk
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Figure 2. The compaction of granular media at low shaking amplitudes. Experimental data
from Knight et al (squares) and MC data for the IFLG (circles) rescaled according equation (3).
Inset: density ρ(τ, x0; tn) from MC data as a function of tap number tn, for tap amplitudes
x0 = 0.001, 0.01, 0.05, 0.1 (from bottom to top) and duration τ = 3.28 × 101. The superimposed
curves are logarithmic fits to equation (3).

density typically grows, as in compaction, and then, after a characteristic�ex , starts decreasing.
However, if the amplitude of shaking is decreased back to zero, the density generally does not
follow the same path since it keeps growing. In this sense these observations indicate the
existence of ‘memory effects’.

In analogy with real experiments, cycles of taps were performed in the IFLG model in
which the vibration amplitude � was varied in a sequence of increments γ = "�/τ , with
constant tap duration τ . After each tap, the static bulk density of the system ρ(�n) (n is the
number of the nth tap) was measured. The data are qualitatively very similar to those reported
from real experiments on dry granular packs [4]. Furthermore, they allow one to define a
‘jamming’ transition point �g(γ ) in analogy with the glass transition in glass formers [13], as
explained in figure 4.

4.2. Two-time correlation functions

Granular media in the above dynamical situations show ‘aging’ too [13]. To see this, just as
for glassy systems, it is useful to consider the two-time correlation functions as (t � t ′)

C(t, t ′) = [〈ρ(t)ρ(t ′)〉 − 〈ρ(t)〉〈ρ(t ′)〉]
[〈ρ(t ′)2〉 − 〈ρ(t ′)〉2]

where ρ(t) is the bulk density of the system at time t .
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Figure 3. The static bulk density, ρ(�), of the IFLG model as a function of the vibration amplitude,
�, in cyclic vibration sequences. The system is shaken with an amplitude�which at first is increased
(filled circles), then is decreased (empty circles), and, finally, is increased again (filled squares)
with a given ‘annealing–cooling’ velocity γ ≡ "�/τ . Here we fixed γ = 1.25×10−3. The upper
part of the cycle is approximately ‘reversible’ (i.e., empty circles and filled squares fall roughly on
the same curve). The data compare rather well with the experimental data of Novak et al. �∗ is
approximately the point where the ‘irreversible’ and the ‘reversible’ branches meet. �g signals the
location of a ‘jamming transition’.
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Figure 4. Main figure: as in figure 3, the density, ρ(�), is plotted as a function of the vibration
amplitude,� for three values of the ‘cooling’ velocityγ . Here only the descending parts of the cycles
are shown. As for glasses, a too-fast cooling drives the system out of equilibrium. The position of
the shoulder, �g(γ ), schematically indicates a ‘jamming transition’. Inset: the numerical estimate,
in the IFLG model, of the dependence of �g(γ ) (circles) and �∗(γ ) (squares) on the cooling rate
γ . Superimposed are logarithmic fits in analogy with those for the glass transition temperature,
Tg(γ ), in glasses [4]. When γ → 0, we roughly find �g(0) = �∗(0).
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The fit, at low �, of the two-time correlation function, C(t, t ′) (over five decades of MC
time), reveals the following interesting approximate scaling form:

C(t, t ′) = (1 − c∞)
ln[(t ′ + ts)/τ ]

ln[(t + ts)/τ ]
+ c∞ (4)

where τ (which is no longer the ‘tap duration’, as it was before); ts and c∞ are fit parameters.
It is very interesting that the above behaviour is found in both the models discussed (Tetris
and IFLG) [13]. The data for the two models, for several values of �, rescaled onto a single
universal master function, are plotted in figure 5. It is interesting that such scaling behaviours
occur in the off-equilibrium dynamics of apparently different systems [24].
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Figure 5. The two-time density–density correlation function, (C(t, t ′) − c∞)/(1 − c∞), as a
function of the scaling variable α = ln[(t + ts )/τ ]/ln[(t ′ + ts )/τ ]. Scaled onto the same master
function are data from both models considered in the present paper (Tetris (squares) and IFLG
(circles)) for � = −1/ln(x0) with x0 ∈ [10−4, 10−1]. Inset: the correlation C(t, t ′) for the Tetris
model at � = 0.22 (or x0 = 0.01) as a function of t − t ′ for t ′ = 102, 2 × 102, 103, 104.

4.3. Response functions and the ‘fluctuation-dissipation’ relation

In reference [14] it was argued that in granular media it is possible to formulate a link between
the response and fluctuations, i.e., the analogue of a ‘fluctuation-dissipation theorem’ (FDT)
(see [20]), where the amplitude of external vibrations plays the role of the usual ‘temperature’.
In typical situations, the FDT coincides neither with its usual version at equilibrium nor
with the extensions valid in off-equilibrium thermal systems in the so-called ‘small-entropy-
production’ limit [21]. The origin of the universalities in the off-equilibrium dynamics in the
above heterogeneous classes of materials is still unknown.
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Our systems are ‘shaken’ at a given amplitude x0 and the average grain height:

h0(t) = 〈H(t)〉
(

with H(t) =
∑
i

yi(t)/N

)

recorded as long as the ‘mean square displacement’

B(t, t ′) ≡ 〈[H(t) − H(t ′)]2〉.
To measure the response function, the average height, h1(t, tw), was also recorded in an
identical copy of the system (a ‘replica’) perturbed by a small increase of the shaking amplitude,
after a time tw.

The difference in height between the perturbed and unperturbed systems "h(t, tw) =
h1(t, tw)− h0(t) is by definition the integrated response. FDT and its generalizations concern
the relation between "h(t, tw) and the displacement, B(t, tw). In analogy with thermal
systems [9], in reference [14] it was proposed that

"h(t, tw) � X

2
"(�−1)B(t, tw). (5)

Equation (5) states that, after transients, in a granular system the measure of the height variation
after a change in shaking amplitude should be proportional to the ‘displacement’ recorded
during an unperturbed run. In the simplest situations, such as for equilibrium thermal systems,
the proportionality factor, X, is a constant, but, more generally, X is function of tw and t

themselves. Interestingly, in glassy systems the quantity g�/X has the meaning of an ‘effective
temperature’ [22, 23].

In the present model, equation (5) seems to be approximately valid, as it also is if in
typical off-equilibrium situations X slowly depends on � and tw. This is shown, for high x0,
in the top panels of figure 6: in the long-time regime, X is equal to 1, showing that, in the
high-‘temperature’ and low-density region, the usual equilibrium version of FDT is obeyed.
In the low-x0 region, the above picture changes, as shown in the bottom panels of figure 6:
after an early transient, the response, "h, is negative and, thus, X is negative, which would
asymptotically correspond to a negative ‘effective temperature’.

5. Conclusions

In conclusion, the present paper has dealt with the understanding of the ‘jamming’ transition in
granular media via the introduction of models from standard statistical mechanics for describing
these ‘non-thermal’ systems (the IFLG and the Tetris models [6, 7]).

They exhibit a logarithmic compaction when subjected to gentle shaking in the presence of
gravity, a compaction extremely close to what is experimentally observed in granular packs [3].
The presence of such slow dynamics is linked to the existence of a ‘jamming’ transition in
granular media. In fact, in the high-density region, at ρm, the models undergo a structural
arrest where the grain self-diffusivity becomes zero [6].

Self-diffusion suppression at ρm signals that, above such a density, it is impossible to
obtain a macroscopic rearrangement of grains without increasing the system volume, a feature
interestingly similar to the phenomenon of the Reynolds dilatancy transition [6].

A very important fact is that the results from the present models are in excellent agree-
ment with known experimental ones, and the many new predictions of the models must be
experimentally investigated. We have also discussed the intriguing connections of granular
media with other materials, such as glassy systems and spin glasses, where geometrical disorder
and frustration play a crucial role.
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Figure 6. The figures on the left show, as a function of t − tw , the average height difference,
"h(t, tw) ≡ h1(t, tw) − h0(t), of a reference system shaken at a given x0 and a replica perturbed
after tw by shaking at x0 +"x0 ("x0 = 0.002). On the right, a check of the generalized fluctuation-
dissipation relation (5) is given. The integrated response, "h(t, tw), is plotted as a function of the
displacement of the reference system, B(t, tw). Systems are shaken at different ‘amplitudes’ x0
(x0 = 0.8 (top) and x0 = 0.5 (bottom)), with replicas perturbed after tw = 370. At low x0, negative
responses appear, but, in agreement with equation (5), "h is asymptotically still approximately
linear in B.
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